
ASP-II for SWEG CM/CCM • 5.0

Update: 02/17/98 2.8-1 SWEG Version 6.5

2.8 CM/CCM

Countermeasures are means of exploiting an adversary's own activity as a means of
determining his intentions and/or reducing his effectiveness. Such means involve using the
energy radiated as a result of the adversary's presence or activities to detect and identify his
weapons systems and platforms. Also, weaknesses in sensors, fuzes, computer processing,
and personnel training can be exploited in order to deceive an adversary as to the actual
tactical situation or to cause malfunction of his equipment.

Types of radiating systems include communications systems and sensors. Generally,
sensors receive more attention (in terms of CM/CCM) since enemy sensors are primarily
directed toward friendly forces whereas enemy communication is directed only at its own
side.

Countermeasures against radiating systems generally consist of either noise or deception
jamming. Noise and deception jamming are processes by which an enemy sensor or
communications device is reduced in effectiveness. Traditionally, there are the “four
horsemen” of countermeasures: deny, delay, degrade, and destroy. This discussion focuses
on the first three since destruction is included under weapon effects.

Electronic Countermeasures (ECM)

The purpose of ECM is to lower the effectiveness of enemy sensors and communications
devices. There are three basic methods by which this is accomplished:

a. Direct energy at a receiver to either cause intermittent effectiveness or to
generate false targets and deceive equipment operators.

b. Modify the properties of the medium between a communication or sensor
device and its intended target.

c. Modify the reflective signature of the target using active or passive measures.
These techniques can often be used in the visual spectrum to change the relative
contrast of the target.

Method a is commonly referred to as “jamming.” Jamming is achieved by saturating the
target receiver (either sensor or communications) with noise so that no information is
gained from it. The major difference between different jamming techniques deal with how
the jamming energy is delivered and depends on the desired effect.

Barrage jamming is a technique whereby energy is directed at enemy receivers in as wide
a band as possible. Barrage jamming attempts to influence, at least to some minimal extent,
all receivers in the vicinity that fall within the spectrum of the jammer. This can cause
collateral effects on friendly systems. Spot jamming involves directing energy in a narrow
band as close to the receiver’s center frequency as possible. Spot jamming is normally
meant to counter a specific receiver when the receiver’s center frequency is known from
some other collection mechanism. Spot jamming can be more effective than barrage
jamming while using much less power due to the narrowness of the transmission band.
Sweep jamming is a combination of the previous techniques where a narrow signal is swept
through a wider bandwidth in order to disrupt reception of several bands in an intermittent
manner. Sweep jamming is often referred to as slow swept or fast swept, where the relative

CM/CCM • 5.0 ASP-II for SWEG

SWEG Version 6.5 2.8-2 Update: 02/17/98

times are dependent upon the inherent time constants of the systems being attacked with
the jamming energy.

Modification of the transmission medium (Method b) is usually accomplished using chaff
or flares. Chaff provides spurious EM reflections to radar equipment, providing an
effective “screen” for aircraft. Flares are used to confuse IR guidance systems by causing
“hot spots” in the IR background, thus distracting IR detectors.

The signature of a target can be modified (Method c) in several ways. Radar-absorbing
paint is used to weaken reflections. Irregular physical surface structures cause reflection
paths to be (at best) orthogonal to the line of site and (at least) wide enough from the
incident path to effectively shrink the signature of the target.

2.8.1 Functional Element Design Requirements

SWEG shall allow the user to define countermeasure systems for electro-magnetic and
acoustic sensors and electro-magnetic communications.

There shall be no arbitrary limit on the number of countermeasure systems that can be a
part of a player structure other than that imposed by the host computer environment.

SWEG shall provide two levels of detail for countermeasure systems: explicit sensor and
communications (for signal to noise plus jamming calculations) and implicit sensor
communications (for probabilistic loss of lock by a sensor tracker).

SWEG shall provide a flexibility for explicit countermeasure systems representation that is
similar to sensors and communications. For example, asymmetric antenna patterns,
frequency dependent gains, and terrain masking effects.

SWEG shall provide the capability to allow for an optional dimension in the kill probability
table to account for countermeasure effects versus a weapon that cannot be adequately
represented with implicit or explicit sensor countermeasures.

SWEG shall account for relative geometry effects on explicit countermeasure systems
interactions with sensors and communications. In the case of sensors the interactions will
be on a sensor chance basis. For communications the interaction will be on a message basis.

2.8.2 Functional Element Design Approach

Countermeasures are represented as systems that belong to elements in the player
structure. There are no explicit player structure linkages between countermeasure systems
and other systems. Thinker systems can employ countermeasure systems based on the
defined tactics and times to think. Other than this, there are no other control relationships
with countermeasure systems.

Countermeasure systems (called disruptors in SWEG) do not have their own event, such
as weapons, sensors, thinkers, and communication systems. Instead, disruptors are checked
and included if necessary in sensor and communication events. Disruptors can be turned on
and off by the user via SDB instructions in a pre-planned mode, or turned on and off within
the simulation using tactics defined by the user. Both modes can be used for the same

ASP-II for SWEG CM/CCM • 5.0

Update: 02/17/98 2.8-3 SWEG Version 6.5

disruptor system but this is not recommended because of the likelihood of an inconsistency
between the pre-planned instructions and the reactions taken by the player.

Pre-planned disruptor use is limited to either turning the disruptor on or off or setting it non-
operational. Reactive changes allow for multiple simultaneous spots or frequency bands for
a single disruptor. The center frequencies of each spot will be centered on the perceived
frequency of an emitter. Although the disruptor will affect the sensor or communication
receiver, it is employed by using perceptions of the emitting transmitters.

Disruptors can affect multiple receivers simultaneously, and a disruptor can affect both
sensors and communications simultaneously via multiple spots or with a single spot if both
the sensor and communication receiver are within the band defined by the spot. Disruptor
effects are independent of the defined sides and command chains so collateral effects can
occur.

Explicit disruptors can be affected by terrain line of sight using common algorithms with
sensors and communications. Similarly, disruptor antenna patterns are defined by common
data formats and used with algorithms also used with sensors and communications.

Energy propagation is instantaneous, similar to sensors and communications. Implicit
disruptors, and disruptors represented as dimensions in the kill probability table have no
energy transmission represented.

Explicit disruptors can be detected by sensors with the proper characteristics.

2.8.3 Functional Element Software Design

This section contains one table and two software code trees which describe the software
design necessary to implement CM/CCM elements. Table 2.8-1 lists most of the functions
found in the code trees, and a description of each function is provided. Figure 1.5-1
describes the top level C++ functions in the code for CM/CCM elements. It contains the
path from main to the main jammer function jamcal. Figure 1.5-2 is the detailed code trees
for these functions.

A function’s subtree is provided within the figure only the first time that the function is
called. Some functions are extensively called throughout SWEG, and the trees for these
functions are in the appendix to this document rather than within each FE description.
Within this FE, the functions in that category are the member functions in the C++ class
WhereIsIt.

Not all functions shown in the figures are included in the table. The omitted entries are
trivial lookup functions (single assignment statements), list-processing or memory
allocation functions, or C++ class functions for construction, etc.

CM/CCM • 5.0 ASP-II for SWEG

SWEG Version 6.5 2.8-4 Update: 02/17/98

main
|-BaseHost::Run

|-MainInit
|-program

|-MainParse
|-semant

|-simul8
|-simnxt

|-simphy
|-BSRVevent
| |-BSRVinitialize
| |-BSRVonechance
| |-BSRVcalculate
| |-jamcal
| |-BSRVsystsensing
| |-jamcal
|-yakker

|-jamcal

FIGURE 2.8-1. CM/CCM Elements Top Level Code Tree.

TABLE 2.8-1. CM/CCM Elements Functions Table.

Function Description

BaseHost::Run runs all steps

BSRVcalculate determines sensor result using signal/noise calculations

BSRVevent controls sensor physical processing

BSRVinitialize initializes physical sensor processing

BSRVonechance supervises sensor chance calculations

BSRVsystsensing performs physical system sensing calculations

jamcal calculates jammer interference power at victim receiver

main controls overall execution

MainInit initiates processing and runs either the boot step or normal execution

MainParse controls parsing of user instructions

program controls execution of all steps except bootstrap

semant controls semantic processing of instructions

simnxt controls event sequencing and runtime execution

simphy controls processing of physical events

simul8 controls semantic processing of runtime instructions

TAddrData::GetJamInteractions checks for jammer interactions with a communications device

TAddrData::GetParentData retrieves the TAddrData object from a parent

TMemory::Deallocate deallocates a list of blocks by using the address within the provided pointer

TMemory::DeallocFront deallocates storage

TTable::SearchInt searches a table for a specific integer

WhereIsIt::CalcPosition determines position for a platform given a time

yakker determines signal level at receiver

ASP-II for SWEG CM/CCM • 5.0

Update: 02/17/98 2.8-5 SWEG Version 6.5

jamcal
|-TMemory::Index2Ptr
|-WhereIsIt::CalcPosition
|-TAddrData::GetParentData
| \-TAddrNode::GetParentData
|-TAddrData::GetJamInteractions
|-TTable::SearchInt
| \-TMemory::Ptr2Index
\-TMemory::Deallocate
 |-TMemory::DeallocFront
 | \-TMemory::GetBlockLength
 |-TMemory::Index2Ptr
 |-CountMemOpns
 | \-TMaster::DebugOn
 \-TMemory::RcylBlock
 |-TMemory::Index2Ptr
 \-TMemory::Ptr2Index

FIGURE 2.8-2. CM/CCM Elements Code Tree.

2.8.4 Assumptions and Limitations

• Energy transmission is instantaneous.
• Energy use is not explicitly represented.
• The speed of light is 299.
• 792,792,800 m/sec and the speed of sound is 330.28 m/sec.
• Root mean square signal power is used in all calculations.
• Received power is uniformly distributed over the receiver bandwidth.

2.8.5 Known Problems or Anomalies

None.

CM/CCM • 5.0 ASP-II for SWEG

SWEG Version 6.5 2.8-6 Update: 02/17/98

